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4.  THE DENSITY MATRIX DESCRIPTION OF A 
DOUBLE-QUANTUM COHERENCE EXPERIMENT 

(INADEQUATE) 
 

 The main goal of INADEQUATE (Incredible Natural 
Abundance DoublE QUAntum Transfer Experiment) is to eliminate 
the strong signal of noncoupled 13C nuclei in order to easily observe 
the 200 times weaker satellites due to C-C coupling.  This is realized 
by exploiting the different phase responses of the coupled and non-
coupled spin signals when the phase of the observe pulse is varied 
(see Figure I.7).  The receiver phase is matched with the desired 
signal.  It shall be seen that the different phase behavior of the coupled 
nuclei is connected with their double-quantum coherence.  The beauty 
of INADEQUATE resides in its basic simplicity: only a two-step 
cycle is theoretically needed to eliminate the unwanted signal. That 
the real life sequences may reach 128 or more steps is exclusively due 
to hardware (pulse) imperfections whose effects must be corrected by 
additional phase cycling. 
 The essence of INADEQUATE can be understood by following  
the basic sequence shown in Figure I.7. 
 
 

td

t(0) t(1) t(8)

90

t(6) t(7)

90x

t(2) t(3)

180x

t(4) t(5)

90x F
Y

Dt t

 
 
 

Figure I.7.  The INADEQUATE sequence: 90x − τ − 180x τ 
90x ∆ 90Φ

−
− − − − AT  (proton decoupling is applied 

throughout the experiment). 



 
 
 
 
 
 
 
32     Density Matrix Treatment 

4.1  Equilibrium Populations 
 
 At thermal equilibrium the four energy levels shown in Figure 
I.8 are populated according to the Boltzmann distribution law, as 
shown in (I.1) through (I.5). In this case both νA and νX are 13C 
transition frequencies.  The difference between νA and νX, due to 
different chemical shifts, is too small to be taken into account when 
calculating the populations.  We assume q = p and (I.6) becomes: 
 
                                      1 1P P=  
                                      2 1(1 )P p P= +  
                                      3 1(1 )P p P= +  
                                      4 1(1 2 ) /P p P= +  
                                      _____________________ 
                                        1 11 (4 4 )p P PS= + =  
 
Hence,                           1 1/P S=  
                                      2 3 (1 ) /P P p S= = +  
                                      4 (1 2 ) /P p S= +  
 
where                             4 4 4S p= + ≅  
 
and the density matrix at equilibrium is: 
  

1

2

3

4

0 0 0 1 0 0 0
0 0 0 0 1 0 01(0)
0 0 0 0 0 1 04
0 0 0 0 0 0 1 2

P
P p

D
P p

P p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 01                (I.60)
0 0 1 0 0 0 1 04 4
0 0 0 1 0 0 0 2

p
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Figure I.8.  Energy levels of a homonuclear AX system (noncoupled 
and coupled). Transition frequencies and coupling constants are in Hz.  

 
We will again ignore the (large) first term which is not affected by 

pulses or evolution,  put  aside  the constant  factor  p/4  and start with  
 

0 0 0 0
0 1 0 0

(0)                              (I.61)
0 0 1 0
0 0 0 2

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 

In order to compare the results of the density matrix treatment with 
those of the vectorial representation, we will calculate for every step 
of the sequence the magnetization components, using the relations 
(B15)  (B22).  We must also consider that here q = p and that MoA 
= MoX = Mo/2, where Mo refers to magnetization due to adjacent 13C 
atoms A and X.  Thus our magnetization equations become (cf. I.53): 

−

 

                              11 22 33 44( / 4)(zA o )M M d d d d= − − + −  
                              11 33 22 44( / 4)(zX o )M M d d d d= − − + −  

                              * *
12 34( / 2)(TA o )M M d d= − +  (I.62) 

                              * *
13 24( / 2)(TX o )M M d d= − +  
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One can check that at thermal equilibrium, when D = D(0) 
 
                          ( / 4)(0 1 1 2) / 2zA o oM M M= − − + − =  
                          ( / 4)(0 1 1 2) / 2zX o oM M M= − − + − =  
 
The transverse magnetization 
 
                          0TA TXM M= =  
 
4.2  The First Pulse 
 
 At time t(0) a nonselective pulse 90xAX is applied.  Since all 
pulses in this sequence are nonselective, the notation AX will be 
omitted.  The density matrix D(1) after the pulse is calculated accord-
ing to: 
                                           1(0) (0)D R D−= R
 
The rotation operator R and its reciprocal 1R−  for the nonselective 90x 
pulse have been calculated in (I.34):  
 

     

1

1 1 1 1
1 1 1 11 1;
1 1 1 12 2

1 1 1 1

i i i i
i i i i

R R
i i i i

i i i i

−

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

−
− −
− −

 

 
First we postmultiply D(0) by R: 
 

                           

0 0 0 0
1 1

(0)
1 1

2 2 2 2

i i
D R

i i
i i

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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Premultiplication with 1R−  leads to 
4 2 2 0 2 0
2 4 0 2 2 01 1

(1)   (I.63)
2 0 4 2 0 24 2
0 2 2 4 0 2

i i i i
i i i i

D
i i i i

i i i i

− − − −

− −
= =

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

We note that the 90o pulse equalizes the populations and creates sin-
gle-quantum coherences.  The longitudinal magnetization is null while 
 
                     ( / 2)( /1 / 2) /TA o oM M i i iM= − + = − 2

o

                     ( / 2)( /1 / 2) / 2TX o oM M i i iM= − + = −
                    T TA TXM M M iM= + = −  
 
We also note that the transverse magnetization is imaginary.  Con-
sidering that MT = Mx + iMy,  it follows that Mx = 0 and  My = − Mo. 
 So far, the vector representation would have been much simpler 
to use.  Let us see, though, what happens as we proceed. 
 
4.3  Evolution from   t (1) to t (2) 
 
 The standard formula describing the (laboratory frame) time 
evolution of the density matrix elements in the absence of a pulse is: 
 
                                 ( ) (0)exp( )mn mn mnd t d i tω= −  (I.64) 
 
dmn is the matrix element and wmn = (Em − En)/  is the angular 
frequency of transition m→n.  Note that dmn(0) is the starting point of 
the evolution immediately after a given pulse.  In our case the ele-
ments dmn(0) are those of D(1).  If the evolution is described in a 
frame rotating at transmitter frequency wtr equation (I.64) becomes: 
 
                 ( ) (0)exp( )exp[ ( ) ]mn mn mn m n trd t d i t i m m tω ω= − −  (I.65) 
 
where  mm and mn  are the total magnetic quantum numbers of states m 
and n (see Appendix B).  
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 Let us apply (I.65) to our particular case (m1 = 1 ; m2 = m3 = 0 ; 
m4 = 1).  As expected, the diagonal elements are invariant during 
evolution since both exponentials are equal to 1.  All single quantum 
coherences above diagonal have mm

−

− mn = 1.  Hence,  
 

                     ( ) (0) exp( ) exp( )mn mn mn trd t d i t i tω ω= −  
                                 (0) exp[ ( ) ]mn mn trd i ω ω= − − t

tΩ                                 (I.66) (0) exp( )mn mnd i= −
 

where Wmn is the evolution frequency in the rotating frame. 
  The rotating frame treatment is useful not only for better 
visualization of the vector evolution but, also, because the detection is 
actually made at the resulting low (audio) frequencies. 
 For the double-quantum coherence matrix element 
 

14 14 14( ) (0) exp( ) exp[ (1 1) ]trd t d i t i tω ω= − +  
                                 (I.67) 14 14(0) exp( )d i= − tΩ
 

where W14 = w14 2wtr.  We note that both single- and double- 
quantum coherences evolve at low frequencies in the rotating frame. 

−

 The zero-quantum coherence matrix element is not affected by 
the rotating frame (m2 − m3 = 0):   
 

                (I.68) 23 23 23 23 23( ) (0) exp( ) (0) exp( )d t d i t d i tω= − = − Ω
 

The zero-quantum coherence evolves at low frequency in both the 
laboratory and rotating frame. 
 We now want to calculate D(2), i.e., the evoluition during the 
first delay t.  For instance 
 

             12 12 12 12(2) (1)exp( ) ( / 2)exp( )d d i i iτ τ= − Ω = − − − Ω  (I.69) 
 

To save space we let  and at t(2) we have: ( / 2) exp( )mn mni i τ− − Ω = B

12 13
*
12 24
*
13 34

* *
24 34

1 0
1 0

(2)                         (I.70)
0 1

0 1

B B
B B

D
B B

B B

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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The z-magnetization is still zero (relaxation effects are neglected). The 
transverse magnetization components are: 
 
                        * *

12 34( / 2)(TA o )M M B B= − +  
                                          12 34( / 4)[exp( ) exp( )]oiM i iτ τ= − Ω + Ω  (I.71) 

                              
* *
13 24( / 2)(TX o )M M B B= − +  

                                          13 24( / 4)[exp( ) exp( )]oiM i iτ τ= − Ω + Ω  (I.72) 
 
We see that there are four vectors rotating with four different angular 
velocities in the equatorial (xy) plane.  We can identify (see Figure 
I.8): 
 

                                         12 12 tr A Jω ω πΩ = − = Ω +  
                                         34 A JπΩ = Ω −  
                                         13 X JπΩ = Ω +  
                                         24 X JπΩ = Ω −  
 
4.4  The Second Pulse 
 
 The rotation operator for this pulse is  

1
180 180

0 0 0 1
0 0 1 0

            (I.73)
0 1 0 0
1 0 0 0

yAX yAXR R−−
= =

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
At time t(3) the density matrix is: 

* *
34 24

*
1 34 13

*
24 12

13 12

1 0
1 0

(3) (2)              (I.74)
0 1

0 1

B B
B B

D R D R
B B

B B

−

− −

− −
= =

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Two important changes have been induced by the 180o pulse.  First, 
all single quantum coherences were conjugated and changed sign.  
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This means that all x-components changed sign while the y-compo-
nents remained unchanged: 
 

                                             T x yM M iM= +  

                                          *
T x yM M iM− = − +  

 

This shows, indeed, that all four vectors rotated 180o around the y-
axis.  Second, coherences corresponding to fast precessing nuclei were 
transferred in "slots" corresponding to slow evolution. This means the 
vectors also changed labels.  
 
4.5  Evolution from  t (3) to t (4) 
 
According to (I.66) and (I.74), the evolution during the second t delay 
leads to 
 

*
12 12 12 34 12(4) (3)exp( ) exp( )d d i B iτ τ= − Ω = − Ω  

           34 12( / 2)exp( )exp( )i i iτ τ= − + Ω − Ω  
           12 34( / 2)exp[ ( ) ] ( / 2)exp( 2 )i i i i Jτ π τ= − − Ω −Ω = − −  (I.75) 

13 12(4) ( / 2)exp( 2 ) (4)d i i J d Uπ τ= − − = =  (I.76) 

24 34(4) (4) ( / 2)exp( 2 )d d i i J Vπ τ= = − + =  (I.77) 
 
Hence, 

*

*

* *

1 0
1 0

(4)                         (I.78)
0 1

0 1

U U
U V

D
U V

V V

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 
Using (I.62) we calculate the corresponding magnetization vectors: 
 

                  0zA zXM M= =

                 * *( ) cos 2TA TX o oM M M U V iM Jπ τ= = − + = −  (I.79) 
 

We see that while the chemical shifts refocused the coupling continues 
to be expressed, due to the label change. 
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4.6  The Third Pulse 
 
 We apply to D(4) the same rotation operators we used for the 
first pulse  and we obtain: 
 

1 0 0
0 1 0 0

(5)                        (I.80)
0 0 1 0

0 0 1

c is

D

is c

+ −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
where c = cos2pJt and s = sin2pJt. 
 D(5) tells us that all single-quantum coherences vanished, a 
double-quantum coherence was created and the only existing magneti-
zation is along the z-axis.  Turning to vector representation, it is seen 
that before the pulse [see(I.78)] we had magnetization components on 
both x and y axes, since U and V are complex quantities.  The vector 
description would indicate that the 90x pulse leaves the x components 
unchanged.  In reality, as seen from the DM treatment, this does not 
happen since all transverse components vanish.  
 
4.7  Evolution from  t (5) to t (6) 
 
 The double-quantum coherence element, − is, evolves accord-
ing to (I.67): 

   
*

1 0 0
0 1 0 0

(6)                         (I.81)
0 0 1 0

0 0 1

c w

D

w c

⎡ ⎤+
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
 
where w = isexp( iW14D) = − − − isin2pJt exp( − iW14D). 
 Our interest is in the double-quantum coherence w.  In order to 
maximize it,  we select t = (2k+1)/4J where  k = integer.  Then c = 0 
and  s = sin[(2k+1)p/2] = ± 1 = (-1)k 
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With this value of t. 

   

1 0 0
0 1 0 0

(6)                              (I.82)
0 0 1 0
* 0 0 1

w

D

w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
where w i ik= - -( ) exp( )1 14W D  
 The last expression of D(6) tells us that at this stage there is no 
magnetization at all in any of the three axes.  This would be impossi-
ble to derive from the vector representation, which also could not 
explain the reapparition of the observable magnetization components 
after the fourth pulse. 
 
4.8  The Fourth Pulse 
 
 This pulse is phase cycled, i.e., it is applied successively in 
various combinations along the x, y, − x, and − y axes. The general 
expression of the 90ΦAX operator is given in Appendix C [see(C39)]. 

  

2

90

2

1
* 1 11                       (I.83)

2 * 1 1
* * * 1

AX

a a a
a a

R
a a

a a a

Φ

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

 
where a = iexp( iF) and F is the angle between the x-axis and the 
direction of B1. When F takes the value 0, 90o, 180o or 270o, the pulse 
is applied on axis x, y, 

−

− x, or − y, respectively. 
 For clarity we will discuss the coupled and the noncoupled 
(isolated) carbon situations separately.  In the first case (coupled 13C 
spins), we observe that at t(6) [see(I.82)] the populations are equalized 
and all information is contained in the w elements.  
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The result of   is: 1
90 90(6)AX AXR D R−
Φ Φ

  

2

2 2

2 2

2

1 * *
1 *

(7)               (I.84)
1 *

1

a F a G a G F
aG a F a F a G

D
aG a F a F a G
F aG aG a F

⎡ ⎤+ − −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− − +⎢ ⎥⎣ ⎦
 

where                      (I.85) 14( *) / 4 (1/ 2)( 1) sinkF w w= + = − − Ω ∆

                         14( *) / 4 (1/ 2)( 1) coskG w w= − = − − Ω ∆
 

D(7) shows that the newly created single quantum coherences contain 
the double quantum coherence information, W14.  The transverse mag-
netization is zero (fast and slow vectors are equal and opposite). A 
longitudinal magnetization proportional to sinW14 appears. None of 
these could be deduced from the vector representation.  Yet, the den-
sity matrix would allow the reader to draw the corresponding vectors. 
 To save time and space we will treat the isolated (uncoupled) 
carbons as an AX system in which A and X belong to two different 
molecules.  We can use (I.81) letting  J = 0  (c = 1; s = 0; w = 0) : 

   

2 0 0 0
0 1 0 0

'(6)                                   (I.86)
0 0 1 0
0 0 0 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

In this case D(7) becomes 
1 / 2 / 2 0
* / 2 1 0 / 2

'(7)                     (I.87)
* / 2 0 1 / 2
0 * / 2 * / 2 1

a a
a a

D
a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

D'(7) shows only single quantum coherences and equalized popula-
tions.  The transverse magnetization of the noncoupled spins is equal 
to their equilibrium magnetization M'o (its orientation depends on the 
value of F). 
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4.9  Detection 
  
 The magnetization at t(8), due to coupled (cpl) and noncoupled 
(ncpl) nuclei can be calculated starting from the single quantum 
coherences in (I.84) and (I.87) respectively. 
 

                   12 13( ) [exp( ) exp( )T d dM cpl M i t i t= Ω + Ω  
                                               24 34exp( ) exp( )]di t i td− Ω − Ω  (I.88)   

where           0 1* ( / 2)exp( )( 1) cosk
oM M aG M i= − = − Φ − Ω ∆4

X d

 

These are the four peaks of the coupled AX system shown as a 
schematic contour plot in Figure I.9. 
  For the noncoupled carbons 
 

                   ( ) '[2exp( ) 2exp( )]T A dM ncpl M i t i t= Ω + Ω  (I.89) 
 

where          ' '' * / 2 ( / 2)exp( )o oM M a iM i= − = − − Φ  
 

These are the two peaks of the uncoupled nuclei.  Each of them is 200 
times more intense than each of the four peaks in (I.88). 
 The culminating point of INADEQUATE is the selective detec-
tion of MT(cpl).  We note that MT(cpl) and MT(ncpl) depend in 
opposite ways on F since one contains a and the other a* [cf.(I.88) 
and (I.89)].  They can be discriminated by cycling F and properly 
choosing the receiver phase Y [the detected signal S = MT exp(-iY)]. 
The table below shows that two cycles are sufficient to eliminate 
MT(ncpl). 
 

 
Cycle 

 
F 

 
Y 

ncpl 
-------------- 
expi(F-Y) 

cpl 
-------------- 
expi(-F-Y) 

1 0 0 1 1 
2 90o -90o                   -1 1 

(1+2)   0 2 
 
 Even small imperfections of the rf pulse will allow leakage of 
the strong undesired signal into the resultant spectrum.  This makes it 
necessary to apply one of several cycling patterns consisting of up to  
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256 steps, which attempt to cancel the effects of too long, too short, or 
incorrectly phased, pulses.  
 
4.10  Carbon-Carbon Connectivity 
 
 A significant extension of INADEQUATE is its adaptation for 
two-dimensional experiments.  The second time-domain (in addition 
to td) is created by making D variable.  All we have to do now is to 
discuss (I.88) and (I.89) in terms of two time variables. 
 As seen in Figure I.9, all four peaks of MT(cpl) will be aligned 
in domain D along the same frequency  W14 = WA + WX.  The great 
advantage of the 2D display consists of the fact that every pair of 
coupled carbons will exhibit its pair of doublets along its own W14 
frequency. This allows us to trace out the carbon skeleton of an 
organic molecule. 
 

WD

W d
W A

W 14

W X

-W 14

0

 
 
 

Figure I.9.  The four peaks due to a pair of coupled 13 C atoms. The 
vertical scale is twice larger than the horizontal scale. 
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 The student is invited to identify the molecule whose 2D 
spectrum is shown in Figure I.10 and to determine its carbon-
carbon connectivities.  The answer is in the footnote on page 59. 
 It should be noted that MT(ncpl) does not depend on D 
[cf.(I.81)].  This means that, when incompletely eliminated, the peaks 
of isolated carbons will be "axial" (dotted circles on the zero 
frequency line of domain ∆). 
 We also note that MT(cpl) is phase modulated with respect to td 
and amplitude modulated with respect to ∆.  Consequently, mirror-
image peaks will appear at frequencies − Ω14. This reduces the 
intensity of the displayed signals and imposes restrictions on the 
choice of the transmitter frequency, increasing the size of the data 
matrix. A modified sequence has been proposed to obtain phase 
modulation with respect to ∆, the analog of a quadrature detection in 
domain ∆. 

~~ ~~

53.1 34.2 26.0 12.1       ppm  
 

Figure I.10.  The carbon-carbon connectivity spectrum of a mo-lecule 
with  MW = 137. 

 


